A Database for Arabic Printed Character Recognition

نویسندگان

  • Ashraf AbdelRaouf
  • Colin Higgins
  • Mahmoud I. Khalil
چکیده

Electronic Document Management (EDM) technology is being widely adopted as it makes for the efficient routing and retrieval of documents. Optical Character Recognition (OCR) is an important front end for such technology. Excellent OCR now exists for Latin based languages, but there are few systems that read Arabic, which limits the penetration of EDM into Arabicspeaking countries. In developing an OCR system for Arabic it is necessary to create a database of Arabic words. Such a database has many uses as well as in training and testing a recognition system. This paper provides a comprehensive study and analysis of Arabic words and explains how such a database was constructed. Unlike earlier studies, this paper describes a database developed using a large number of collected Arabic words (6 million). It also considers connected segments or Pieces of Arabic Words (PAWs) as well as Naked Pieces of Arabic Word (NPAWs); PAWS without diacritics. Background information concerning the Arabic language is also presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Off-line Arabic Handwritten Recognition Using a Novel Hybrid HMM-DNN Model

In order to facilitate the entry of data into the computer and its digitalization, automatic recognition of printed texts and manuscripts is one of the considerable aid to many applications. Research on automatic document recognition started decades ago with the recognition of isolated digits and letters, and today, due to advancements in machine learning methods, efforts are being made to iden...

متن کامل

A Modfied Self-organizing Map Neural Network to Recognize Multi-font Printed Persian Numerals (RESEARCH NOTE)

This paper proposes a new method to distinguish the printed digits, regardless of font and size, using neural networks.Unlike our proposed method, existing neural network based techniques are only able to recognize the trained fonts. These methods need a large database containing digits in various fonts. New fonts are often introduced to the public, which may not be truly recognized by the Opti...

متن کامل

Word-level recognition of multifont Arabic text using a feature vector matching approach

Many text recognition systems recognize text imagery at the character level and assemble words from the recognized characters. An alternative approach is to recognize text imagery at the word level, without analyzing individual characters. This approach avoids the problem of individual character segmentation, and can overcome local errors in character recognition. A word-level recognition syste...

متن کامل

A Robust Free Size OCR for Omni-Font Persian/Arabic Printed Document Using Combined MLP/SVM

Optical character recognition of cursive scripts present a number of challenging problems in both segmentation and recognition processes and this attracts many researches in the field of machine learning. This paper presents a novel approach based on a combination of MLP and SVM to design a trainable OCR for Persian/Arabic cursive documents. The implementation results on a comprehensive databas...

متن کامل

An Empirical Evaluation of Off-line Arabic Handwriting And Printed Characters Recognition System

Handwriting recognition is a challenging task for many real-world applications such as document authentication, form processing, historical documents. This paper focuses on the comparative study on off-line handwriting recognition system and Printed Characters by taking Arabic handwriting. The off-line Handwriting Recognition methods for Arabic words which being often used among then across the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008